正态总体假设检验

约定

  1. 假设中形如 $\mu\sim \mu_{0}$ 以及拒绝域中形如 $Z\sim Z(…)$ 表示
零假设 $H_{0}$ 备择假设 $H_{1}$ 拒绝域
$\mu\leq \mu_{0}$ $\mu>\mu_{0}$ $Z\geq Z_{\alpha}$
$\mu\geq \mu_{0}$ $\mu<\mu_{0}$ $Z\leq Z_{1-\alpha}$
$\mu=\mu_{0}$ $\mu\neq \mu_{0}$ $Z\geq Z_{\alpha/2} \lor Z\leq Z_{1-\alpha/2}$

注意取等只在 零假设$H_{0}$拒绝域

假设 条件 枢轴变量 拒绝域
$\mu\sim \mu_{0}$ $\sigma^{2}$ 已知 $\frac{\bar{X}-\mu}{\sigma/\sqrt{ n }}\sim N(0,1)$ $\frac{\bar{X}-\mu_{0}}{\sigma/\sqrt{ n }}\sim N(0,1)$
$\mu \sim \mu_{0}$ $\sigma^{2}$ 未知 $\frac{\bar{X}-\mu}{S/\sqrt{ n }}\sim t(n-1)$ $\frac{\bar{X}-\mu_{0}}{S/\sqrt{ n }}\sim t(n-1)$
$\sigma^{2}\sim\sigma_{0}^{2}$ $\mu$ 未知 $\frac{(n-1)S^{2}}{\sigma^{2}}\sim \chi^{2}(n-1)$ $\frac{(n-1)S^{2}}{\sigma_{0}^{2}}\sim \chi^{2}(n-1)$
$\mu_{1} - \mu_{2}\sim \delta$ $\sigma_{1}^{2},\sigma_{2}^{2}$ 已知 $\frac{(\bar{X}{1}-\bar{X}{2}) - (\mu_{1}-\mu_{2})}{ \sqrt{ \frac{\sigma_{1}^{2}}{n_{1}^{2}}+\frac{\sigma_{2}^{2}}{n_{2}^{2}}}}\sim N(0,1)$ $\frac{(\bar{X}{1}-\bar{X}{2})-\delta}{ \sqrt{ \frac{\sigma_{1}^{2}}{n_{1}^{2}}+\frac{\sigma_{2}^{2}}{n_{2}^{2}}}}\sim N(0,1)$
$\mu_{1} - \mu_{2}\sim \delta$ $\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma^{2}$ 未知 $\frac{(\bar{X}{1}-\bar{X}{2})-(\mu_{1}-\mu_{2})}{S_{W} \sqrt{ \frac{1}{n_{1}^{2}}+\frac{1}{n_{2}^{2}}}}\sim t(n_{1}+n_{2}-2)$
$S_{W}^{2}=\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}$
$\frac{(\bar{X}{1}-\bar{X}{2})-\delta}{S_{W} \sqrt{ \frac{1}{n_{1}^{2}}+\frac{1}{n_{2}^{2}}}}\sim t(n_{1}+n_{2}-2)$
$S_{W}^{2}=\frac{(n_{1}-1)S_{1}^{2}+(n_{2}-1)S_{2}^{2}}{n_{1}+n_{2}-2}$
$\sigma_{1}^{2}\sim\sigma_{2}^{2}$
(等价于 $\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}\sim1$)
$\mu_{1},\mu_{2}$ 未知 $\frac{S_{1}^{2}/\sigma_{1}^{2}}{S_{2}^{2}/\sigma_{2}^{2}}\sim F(n_{1}-1,n_{2}-1)$ $\frac{S_{1}^{2}}{S_{2}^{2}}\sim F(n_{1}-1,n_{2}-1)$
$\mu_{D}\sim 0$ 成对数据 $\frac{\bar{D}-\mu_{D}}{S_{D}/\sqrt{ n }}\sim t(n-1)$ $\frac{\bar{D}-0}{S_{D}/\sqrt{ n }}\sim t(n-1)$