$$
\int_{0}^{\frac{\pi}{2}} \sin ^{n}x , dx=\int_{0}^{\frac{\pi}2{}}\cos ^{n}x , dx=\left{ \begin{align}
&\frac{(n-1)!!}{n!!}& (n为奇) \
&\frac{(n-1)}{n!!}\cdot \frac{\pi}{2}&(n为偶)
\end{align} \right.
$$
$$
\int_{0}^{\pi} \sin ^{n} x , dx = 2\cdot \int_{0}^{\frac{\pi}{2}} \sin ^{n}x , dx
$$
$$
\int_{0}^{\pi} \cos ^{n}x , dx =\left{ \begin{align}
& 0 & (n为奇) \
& 2\cdot \int_{0}^{\frac{\pi}{2}} \cos ^{n}x , dx & (n为偶)
\end{align} \right.
$$
$$
\int_{0}^{2\pi} \sin ^{n}x , dx =\int_{0}^{2\pi} \cos ^{n}x , dx=\left{ \begin{align}
& 0 & (n为奇) \
& 4\cdot \int_{0}^{\frac{\pi}{2}} \sin ^{n} , dx & (n为偶)
\end{align} \right.
$$
提示
根据函数图像的正负形记忆是 0 还是 $k\cdot \int_{0}^{\frac{\pi}{2}} \sin ^{n}x , dx$